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Abstract— The k-means algorithm is one of the most widely 
used clustering algorithms in many different fields such as 
the diagnosis of cancers and species classification. Despite its 
popularity, k-means has some challenges in terms of run time 
and accuracy. While the algorithm can get reasonable 
accuracy in clustering, it is heavily reliant on the number of 
clusters and the selection of initial starting points of the 
centers.  Additionally, the data needs to be in its most usable 
state, that is, the data must have labels for testing, well-
distributed within each classification containing few outliers. 
We have addressed these issues by using data-censoring 
techniques and a variation of the MaxMin algorithm for 
initial center selection. The results of our experimentation 
have shown that the new approach has reduced overall 
runtime while maintaining similar accuracy or better. 

Keywords— Clustering, k-means clustering algorithm, data 
mining, data-censoring, MaxMin algorithm 

I. INTRODUCTION

A. The k-means Algorithm
In 1967, J. MacQueen [1] created the k-means

clustering algorithm, which he believed would primarily 
be used for “similarity grouping.” In the k-means 
algorithm, the number k represents the desired number of 
clusters, which is provided by the user.  Given a set of data 
points and a number k, the algorithm generates randomly 
the initial center (or centroid) of each of k clusters, as 
described using pseudo-code in Algorithm 1. Then, the 
algorithm computes the distance from each data point to 
each of the k centers and assigns the data point to the 
cluster whose center is closest using the Euclidean 
Distance (ED) between two points p and q, denoted as d(p, 
q) where i through n represents the columns in each data
point as shown below.

Next, the centroids are updated by taking the means of 
the data points within the same group. With the updated 
centroids, the algorithm computes the distance from each 
data point and reassigns the data point to a different group 
if necessary.  The process repeats until no data points 
change their group. This provides a learned relationship 
pattern amongst data points. However, he never intended 
for the algorithm to be used for exact groupings. The goal 

of the k-means algorithm was to create a reasonably good 
grouping that would help the user understand abundant 
amounts of N-dimensional data. 

Algorithm 1: Base k-means algorithm 
Input: 

Set of n data points {d1, d2, ..., dn} 
Number of desired clusters, k 

Output: 
Set of k clusters, C = {C1, C2, ..., Ck} 

Steps: 
1) For each cluster Cj, 1≤ i ≤ k, select a data point at random 
as the initial centroid of Cj.
2) For each data point di, 1≤ i ≤ n, assign it to a cluster.

For each cluster Cj, compute the ED from the centroid 
of Cj to di. 
Assign di to the cluster with the lowest ED. 

3) For each cluster Cj, 1≤ i ≤ k, update the centroid
Take the average of all the data points in Cj and let the 
average be the new centroid of Cj 

4) Repeat Steps 2) and 3) until
No data points move to a different cluster in Step 3).

B. Why is k-means Important?
The k-means algorithm is an unsupervised learning

technique, that is, it makes its correlations between the 
different properties of an entry rather than basing its 
conclusions on label selection. It is also considered a non-
parametric method. Non-parametric methods are primarily 
used when functional relationships between attributes can 
potentially be very difficult to predict. 
     With k-means clustering, we assume that the data can 
be represented using a small subset of data points which 
express the average or mean behavior of the data at each 
point (shown in Figure 1). With the growing world of Big 
Data, being able to reduce data sets that contain Gigabytes 
to Terabytes worth of data is becoming more of a 
necessity than ever before and this data reduction is where 
k-means excels at.

C. The Problems with k-means
The k-means algorithm is a very popular clustering

method, but it has some drawbacks. For example, the 
algorithm requires the user to provide the value of k, 
which is the number of clusters they want to use. 
Furthermore, the original intent for the algorithm was for 
the user to run several times with different starting values 

ISSN:0975-9646
James M. Phillips et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 53-58

www.ijcsit.com 53



and to see any skews in the data that could be lowering the 
accuracy of the algorithm [1]. Another reason for 
necessitating multiple runs is that the algorithm has a good 
chance of showing poor convergence of the clusters 
because the initial centroids of clusters are placed 
randomly. Some methods start at a single point in the data 
set while others simply plot a point within the bounds of 
the data. Because of this randomness, the clusters can run 
into issues of having too few data samples or even having 
no data points at all.   
 

 
Fig 1. Illustration of the k-means algorithm's ability to reduce the size of 
the data in points centered in groupings. 
 
 

In the next section, we discuss background information 
that is used in developing our new approach. In Section 3, 
we describe our proposed improved k-means algorithm.  
Section 4 explains the necessary components needed to 
recreate this project from scratch and describes our testing 
process. Section 5 shows and compares the test results of 
the base k-means algorithm and the Improved k-means 
algorithm. We conclude with Section 6 discussing the 
implication of our results and future paths this project can 
take. 

II. BACKGROUND 
A.  Early Projects 

Many researchers have tried to find a way of choosing 
better initial starting centers, for the k-means algorithm, to 
converge to the global optimum accuracy. For example, in 
1998 Paul Bradley and Usama Fayyad introduced a way of 
refining the initial starting points by “operating over small 
sub-samples of a given database [2]." This allows their 
algorithm to operate around the modes (maxima) of the 
data set. By operating around the modes, they can reduce 
the total number of iterations the k-means algorithm must 
go through before convergence is achieved.  

Bradly [3] later tried to reduce the number of empty 
clusters generated by the original k-means algorithm. His 
proposed method forces every cluster to contain a certain 
amount of points by using a constraint method to gather 

outlier data that does not fit within the normal clusters of 
the data. 

Other approaches focused on finding starting points 
rather than controlling the data points. For example, Ting 
Su and Jennifer Dy used a deterministic approach to find 
the initial starting points. Their algorithm splits the sample 
data hierarchically by dividing the cluster into halves. This 
process is continued across the cluster with the highest 
sum-squared-error until k clusters are found allowing for a 
more balanced set of data points [4].  

By balancing out the clusters, they tried to make the 
algorithm produce much more difficult to have bad 
clusters, which contain few or no data points. Bad clusters 
with few data points are generated when those few data 
points share some very specific characteristics, and this 
prevents them from fitting in a larger cluster. A cluster 
generated with no data points suggests that the cluster's 
initial starting location is likely too close to another and 
hence it becomes essentially useless. 

 
B.  Initialization Techniques 

Madhu Yedla et al. suggest that fixing attributes to be 
non-negative and picking initial centroids based on the 
distance from the origin (see [5] for the detail.). After 
finding all the distances, the algorithm splits the data into k 
groups based on the distance measurements and picks the 
mean of each of those sets as a centroid [5]. Other projects, 
like Pasi Fränti and Sami Sieranoja's, continued Yedla's 
work but used a different heuristic-based distance 
approach to determine distance from the origin and 
checked the results of accuracy when repeating this 
calculation multiple times [6]. 

In this paper, we propose a new approach that utilizes 
two methods.  One is the application of a variation of the 
MaxMin algorithm for the initial centroid selection of the 
k clusters that would improve the efficiency of the k-mean 
algorithm by allowing the centroid adjustment only once 
instead of multiple iterations. The other is a data-censoring 
technique, which removes outliers from the data set.  
These two methods will be described in detail in the next 
two sections. 

III. THE IMPROVED K-MEANS ALGORITHM 
We have modified the k-means algorithm to increase 

efficiency while maintaining similar accuracy measures. 
Algorithm 2 shows the pseudo-code of the Improved k-
means Algorithm. Instead of randomly selecting the initial 
location of all the k clusters, the Improved k-means 
algorithm chooses a data point randomly for the initial 
center of only the first cluster.  Next, for the second cluster, 
it selects the point that is the farthest away from the first 
center using ED. In determining the initial center of all the 
remaining (k-2) clusters, the algorithm uses a variation of 
the MaxMin algorithm as described below. 

 First, for each data point, the algorithm computes the 
ED measurement from each of the centers of the existing 
clusters. Next, it computes the sum of the EDs for each 
data point. And then, using the 10 data points with the 
highest distance sum, the algorithm computes the standard 
deviation. Finally, it selects the point with the lowest 

James M. Phillips et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 53-58

www.ijcsit.com 54



standard deviation as the center of the next cluster. This 
process is repeated until all the k centers have been 
selected. This extra step of finding the standard deviation 
is needed to find the point that is the farthest from all the 
previously selected centers. Without using the standard 
deviation, there could be a case where the newly selected 
center is very close to an existing center, but it has been 
chosen because it is very far from another center.  By 
taking the highest EDs and then the lowest standard 
deviation we look for the value with the lowest difference 
in distance measurements from each center.  

 Once the centers of all of the k clusters are selected, the 
algorithm assigns each data point to its closest cluster, and 
then it adjusts the value of the centroid of each cluster as 
the final step by taking the average of all the data points 
that belong to the same cluster. Unlike the base k-means 
algorithm, our algorithm does not repeat the step of 
adjusting the centers; it is done only once.  Our Improved 
k-means algorithm takes longer in selecting the initial 
centers of the k clusters, but it compensates the time spent 
on initial center selection by saving a significant amount 
of time in updating the value of centroids. 

 
Algorithm 2: Improved k-means algorithm  
Input: 
      Set of n data points {d1, d2, ..., dn} 
 Number of desired clusters, k 
Output: 
 Set of k clusters, C = {C1, C2, ..., Ck} 
Steps: 
 1) For each cluster Cj, 1≤ i ≤ k, select its initial centroid. 

  
a) Select a data point at random as the centroid of the first 
cluster, C1. 

  b) Determine the centroid of C2. 

   
i) For di, 1≤ i ≤ n, compute the ED to the centroid of 
C1. 

   
ii) Select the data point with the maximum distance as 
the centroid of C2. 

  c) For Cj, 3 ≤ i ≤ k, select its centroid. 

   
i) For each data point di, 1≤ i ≤ n, compute the ED 
from each of the centroids of Cm, 3 ≤ m ≤ j-1. 

   
ii) For each data point di, 1≤ i ≤ n, compute the sum 
of the EDs obtained in Step i). 

   
iii) Take the top 10 data points with the largest sum of 
the EDs. 

   
iv) For each of the 10 data points, compute the 
average of the ED sum and the standard deviation. 

   
v) Select the data point with the lowest standard 
deviation as the centroid of Cj. 

 2) For each data point di, 1≤ i ≤ n, assign it to a cluster. 

  
a) For each Cj, compute the ED from the centroid of Cj to 
di. 

  b) Assign di to the cluster with the lowest ED. 

 3) For each cluster Cj, 1≤ i ≤ k, update the centroid  

  
Take the average of all the data points in Cj and let the 
average be the new centroid of Cj 

 

IV. METHODS 
A.  Data Sets, Similarities, and Center Selection 

For our experimentation, we used the Iris and Breast 
Tissue data sets provided by [7]. Each data point in the Iris 

data set contains four attributes represented by columns. 
Each data point belongs to one of the three classes, 
labelled as 0, 1, and 2, and these labels appear in the final 
column of the data set. Some of the main reasons we have 
chosen the Iris data set are that it is well balanced with 
each of the labels containing exactly 50 samples, that data 
contained in each column is within a small distance from 
each other data point, and that no data point is missing any 
column information. The Breast Tissue data set was 
chosen because of its stark difference from the Iris data set. 
The Breast Tissue data set contains six classes, represented 
by the values 0, 1, 2, 3, 4, and 5, contained in the final 
column of the data set. The data set has nine attributes that 
can have a large range of values and there is an 
unbalanced amount of data samples for each class with the 
most frequent class being class 5 at 22 instances and the 
least frequent being class 4 with 14 instances. 

For the experiment, we have used the original versions 
of the two data sets as well as a data-censored version of 
each data set. As mentioned previously in Section 2, the 
use of data censoring and outlier collection has been 
proven useful in increasing the accuracy of the k-means 
algorithm. We have used a variation of both these methods 
against our data sets by zero centering our data per column 
and finding the Z-score of each attribute in the data set. 
Algorithm 3 shows the data-censoring procedure in 
pseudo-code.  Note that Step 1) in Algorithm 3 describes 
how to determine the Z-score for each of the 
column/attribute values. By taking the Z-score we can find 
the data points along with different attributes that would 
be considered outlier data amongst the current set of data 
points. The data points that yielded a Z-score with a 
magnitude greater than 3.0 were then removed from the 
data set. 

 
Algorithm 3: Data-censoring  
Input: 
      Set of n data points {d1, d2, ..., dn} 
Output: 
 Set of m data points {d1, d2, ..., dm}, m ≤ n. 
Steps: 

 
1) For each data point di, determine the Z-Score for each of 
the column/attribute values. 

  
a) Compute the average of the column value of all the 
data points, µ, and the standard deviation, σ. 

  
b) Calculate the Z-score for the column value, x, of each 
data point by the formula:  z = (x- µ)/σ 

 
2) Remove data points having at least one column with a Z-
score higher than 3. 

 3) Process each column so that the mean of the column is 0. 
  a) Find the mean of the column.  

  
b) Subtract the mean from the respective column of each 
data point 

 
In our experiment, both the k-means and the Improved 

k-means algorithms take in a training set, a testing set, and 
the number of clusters. The testing set is a selection of 10 
random data points while the training set consists of all the 
remaining data points. The training and testing sets were 
generated randomly from the available data points and no 
points appear in both the training and testing set.  

James M. Phillips et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 53-58

www.ijcsit.com 55



To decide on the choice of k, each number between 1 
and (n-10), where n is equal to the number of data points 
in the data set, was tested 100 times as a candidate for the 
value of k. Figures 2, 3, 4, and 5 below show the results of 
the tests conducted on the four data sets: the original and 
data-censored versions of the Iris and the Breast Tissue 
data sets, respectively. As suggested in Figures 2 and 3, 
the tests lead to using 20 for the value of k for both 
versions of the Iris data set. Similarly, Figures 4 and 5 
showing the test results on the Breast Tissue data set 
suggest that 90 is the optimal value for k. 

 
 

 
Fig 2. Results from the test for the value of k using the original Iris data 
set. The y-axis reads Percentage Correct (% | +- Std Err) and has a scale 
of 0-100. The x-axis reads Number of Clusters (k) and has a scale of 0-

140. 
 
 

 
Fig 3. Results from the test for the value of k using the censored Iris data 
set. The y-axis reads Percentage Correct (% | +- Std Err) and has a scale 
of 0-100. The x-axis reads Number of Clusters (k) and has a scale of 0-

140. 
 
 

 
Fig 4. Results from the test for the value of k using the original Breast 

Tissue data set. The y-axis reads Percentage Correct (% | +- Std Err) and 
has a scale of 0-60. The x-axis reads Number of Clusters (k) and has a 

scale of 0-95. 
 

 
Fig 5. Results from the test for the value of k using the censored Breast 

Tissue data set. The y-axis reads Percentage Correct (% | +- Std Err) and 
has a scale of 0-70. The x-axis reads Number of Clusters (k) and has a 

scale of 0-95. 
 
B.  Experimentation 

To compare the accuracy of the two algorithms, we have 
implemented both algorithms in Python and tested the two 
programs using the four data sets described above.  The 
programs used 20 and 90 as the value of k for the Iris and 
the Breast Tissue data sets, respectively. At each run the 
programs randomly selected 10 data points as the testing 
set (and the remaining (n-10) data points as the training set) 
and recorded the number of classifications it produced 
correctly, ranging from 0-10.  The accuracy was estimated 
by taking the average of 100 runs for each program on 
each data set.  

For the comparison of the efficiency (time complexity) 
of the two algorithms, the programs also calculated the 
time they took from start to finish for each run. Again, the 
efficiency was estimated by taking the average of 100 runs. 

 

V. RESULTS 
A.  Accuracy Results 

Figures 6 and 7, show the accuracy distribution for both 
the base k-means algorithm (shown in blue) and the 
Improved k-means algorithm (shown in orange) for the Iris 
data sets. The average, minimum, and maximum values of 
accuracy can be seen in Table 1 for the Iris data sets.  

TABLE I 
ACCURACY (%) FOR IRIS DATA SETS 

Data Set Algorithm Average Minimum Maximum 
Original Base k 95.6 70 100 
Original Improved 91.5 70 100 

Data-censored Base k 93.3 70 100 
Data-censored Improved 84.6 50 100 

 
For the original Iris data set, as shown in Figure 6, the 

base k-means algorithm has a higher average accuracy at 
about 95% while the Improved k-means algorithm has an 
average accuracy of about 91.5%. Both the minimum and 
the maximum accuracy are the same for both algorithms 
being 70% and 100%, respectively. 
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Fig 6. Accuracy distribution results from running both algorithms against 
the original Iris data set. The y-axis states the number of times an 
accuracy was achieved on a scale of 0-70 and the x-axis shows the 
corresponding distributions for each algorithm across a scale of 0-10. 
 

The accuracy results for the data-censored Iris data set 
are shown in Figure 7. Both the base k-means and the 
Improved k-means algorithms showed a decreased 
accuracy. The base algorithm had an average accuracy of 
93.3% with a minimum accuracy of 70% and a maximum 
accuracy of 100%. The Improved algorithm had an 
average accuracy of 84.6% with a minimum accuracy of 
50% and a maximum accuracy of 100%.  

 

 
Fig 7. Accuracy distributions results from running both algorithms 
against the Data-censored Iris data set. The y-axis states the number of 
times an accuracy was achieved on a scale of 0-50 and the x-axis shows 
the corresponding distributions for each algorithm across a scale of 0-10. 
 
Similarly, to the style of the Iris results, Figures 8 and 9 
show the accuracy distribution for the Breast Tissue data 
sets and Table 2 shows the average, minimum, and 
maximum values of accuracy for the Breast Tissue data 
sets. 

TABLE II 
ACCURACY (%) FOR BREAST TISSUE DATA SETS 

Data Set Algorithm Average Minimum Maximum 
Original Base k 55.5 20 100 
Original Improved 59.6 30 90 

Data-censored Base k 66.6 40 100 
Data-censored Improved 67.8 30 100 

 
The accuracy results of the original Breast Tissue data 

set are shown in Figure 8. These results show the base 
algorithm had an average accuracy of 55.5% with a 
minimum accuracy of 20% and a maximum accuracy of 
100%. The Improved algorithm had an average accuracy 
of 59.6% with a minimum accuracy of 30% and a 
maximum accuracy of 90%. 

 
Fig 8. Accuracy distribution results from running both algorithms against 
the original Breast Tissue data set. The y-axis states the number of times 
an accuracy was achieved on a scale of 0-30 and the x-axis shows the 
corresponding distributions for each algorithm across a scale of 0-10. 
 

The accuracy results of the data-censored Breast Tissue 
data set are shown in Figure 9. Both algorithms showed an 
increase in accuracy this time compared to the original 
data set. The base algorithm had an average accuracy of 
66.6% with a minimum accuracy of 40% and a maximum 
accuracy of 100%. The Improved algorithm had an 
average accuracy of 67.8% with a minimum accuracy of 
30% and a maximum accuracy of 100%. 

 

 
Fig 9. Accuracy distribution results from running both algorithms against 
the Data-censored Breast Tissue data set. The y-axis states the number of 
times an accuracy was achieved on a scale of 0-30 and the x-axis shows 
the corresponding distributions for each algorithm across a scale of 0-10. 
 
 
B.  Time Results 

When looking at the time elapsed measurements shown 
in Tables 3 and 4 for each of the algorithms, it is clear to 
see that the Improved algorithm performs much better than 
the base algorithm. This is shown in the minimum, 
maximum, and average time calculations for each data set. 
The strongest contributing factor to this outcome is likely 
the reduced iteration count of the Improved algorithm 
when re-establishing centroids and closest points. This 
greatly compensates for the extra time spent finding the 
initial starting cluster centers. Best cases show the 
Improved k-means algorithm running in less than half the 
time of the base k-means algorithm. Worst cases show the 
Improved algorithm running in just over half the time that 
the base algorithm runs in. 
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TABLE III 
TIME (SECONDS) FOR IRIS DATA SETS 

Data Set Algorithm Average Minimum Maximum 
Original Base k 0.4162 0.2585 0.9575 
Original Improved 0.1413 0.1362 0.1677 

Data-censored Base k 0.4032 0.2484 0.6808 
Data-censored Improved 0.1417 0.1361 0.1798 

TABLE IV 
TIME (SECONDS) FOR BREAST TISSUE DATA SETS 

Data Set Algorithm Average Minimum Maximum 
Original Base k 1.1999 0.8181 1.9074 
Original Improved 0.6480 0.6238 0.7039 

Data-censored Base k 1.0619 0.7926 1.6278 
Data-censored Improved 0.6377 0.6069 0.6958 

VI. CONCLUSION AND FUTURE WORK

Our experiments show that the Improved k-means 
algorithm is much more efficient than the base k-means 
algorithm across all the versions of data sets that we used. 
In the best case, the Improved algorithm runs in less than 
half the time of the base algorithm, and even in the worst 
case, the Improved algorithm runs in just over half the 
time algorithm.  

  In terms of accuracy for both the original and the data-
censored versions of the Iris data, the Improved algorithm 
had a lower average accuracy but could reach the same 
maximum accuracy that the base algorithm could. This 
lower average accuracy could be for a few reasons, but the 
main contributor is likely the fact that for the Iris data set 
the data points are evenly distributed among its three 
labels. This even distribution could produce more overlaps 
between data points and clusters. In the initialization 
method of the Improved k-means, centers are picked to be 
as far away as possible from each other. If the data points 

are in tight groupings or they show similarities between 
labels, then it can be hard to split groupings into these 
farthest centers accurately. With the Breast Tissue data 
sets, we can see that the Improved k-means performed 
more efficiently for both the original and the data-
censored versions of the data set. This is probably since 
the Breast Tissue data set does not have an even 
distribution of labels.  

  From the results of our experimentation, we conclude 
that the Improved k-means algorithm does align with our 
goal, which is to improve the efficiency of the base k-
means. However, when testing the usefulness of data-
censoring, our results show this to be data set dependent. 
We think that finding an efficient way to choose the value 
of k at execution time should be the top priority for the 
progression of our algorithm. We believe that the 
Improved k-means algorithm, along with a dynamic 
selection of the value of k, could easily retain its 
usefulness and grow its popularity in this growing age of 
Big Data.  
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